> 文章列表 > 视觉追踪的分类

视觉追踪的分类

视觉追踪的分类

(1)单摄像头与多摄像头

在视频跟踪的过程中,根据使用的摄像头的数目,可将目标跟踪方法分为单摄像头跟踪方法(Monocularcamera)与多摄像头跟踪方法(Multiplecameras)。由于单摄像头视野有限,大范围场景下的目标跟踪需要使用多摄像头系统。基于多个摄像头的跟踪方法有利于解决遮挡问题,场景混乱、环境光照突变情况下的目标跟踪问题。

(2)摄像头静止与摄像头运动

在实际的目标跟踪系统中,摄像头可以是固定在某个位置,不发生变化,也可以是运动,不固定的。例如,对于大多数的视频监视系统而言,都是在摄像机静止状态下,对特定关注区域进目标的识别跟踪;而在视觉导航等的应用系统中,摄像头往往随着无人汽车、无人机等载体进行运动。

(3)单目标跟踪与多目标跟踪

根据跟踪目标的数量可以将跟踪算法分为单目标跟踪与多目标跟踪。相比单目标跟踪而言,多目标跟踪问题更加复杂和困难。多目标跟踪问题需要考虑视频序列中多个独立目标的位置、大小等数据,多个目标各自外观的变化、不同的运动方式、动态光照的影响以及多个目标之间相互遮挡、合并与分离等情况均是多目标跟踪问题中的难点。

(4)刚体跟踪与非刚体跟踪

根据被跟踪目标的结构属性,可将跟踪目标分为刚体与非刚体。所谓刚体,是指具备刚性结构、不易形变的物体,例如车辆等目标;非刚体通常指外形容易变形的物体,例如布料表面、衣服表面等。针对刚体目标的跟踪一直得到广泛深入的研究,而非刚体目标的跟踪,由于目标发生变形以及出现自身遮挡等现象,不能直接应用基于刚体目标的跟踪算法针对非刚体目标的跟踪一直是非常困难并且具有挑战性的课题。

(5)可见光与红外图像的目标跟踪

根据传感器成像的类型不同,目标跟踪还可以分为基于可见光图像的跟踪和基于红外图像的跟踪。目标的红外图像和目标的可见光图像不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布的图像。红外图像属于被动式成像,无需各种光源照明,全天候工作,安全隐敝,使用方便;红外光较之可见光的波长长得多,透烟雾性能较好,可在夜间工作。可见光图像具有光谱信息丰富、分辨率高、动态范围大等优点,但在夜间和低能见度等条件下,成像效果差。

比较常用的目标跟踪算法有以下几种:基于目标运动特征的跟踪算法,如:帧差分法、基于光流的跟踪方法等;基于视频序列前后相关性的目标跟踪算法,如:基于模板的相关跟踪算法、基于特征点的相关跟踪算法等;基于目标特征参数的跟踪算法,如基于轮廓的跟踪算法、基于特征点的跟踪算法等。另外,很多研究者将小波、人工智能、神经网络等相关知识应用于目标跟踪领域,并取得了很好的效果。以上这些算法各有其优缺点,应该根据应用场合进行选择。