就是将x当成未知数,y当成已知数,解出方程, 然后掉换x,y即得反函数。记得要写上定义域(即原来函数的值域)
y=(ax+b)/(cx+d)
去分母:cxy+dy=ax+b
(dy-b)=(a-cy)x
得:x=(dy-b)/(a-cy)
反函数即为y=(dx-b)/(a-cx), x≠a/c
y=2^x/(2^x+1)
y+y*2^x=2^x
2^x=y/(1-y)
x=ln[y/(1-y)]/ln2
反函数即为y=ln[x/(1-x)]/ln2, 0<x<1